A tandem Michael addition-rearrangementcarbonylation by (4-nitrophenylsulfonylmethyl) benzene and its derivatives with methacrylates under PTC[†]

Guoren Yue^{a,b}, Xuegong She^a, Zheng Zhang^c and Xinfu Pan^{a*}

^aState Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, 730000, Lanzhou, Gansu, P.R.China ^bDepartment of Chemistry, Hexi University, 734000, Zhangye, Gansu, P.R.China

^cNanjing University, 210093, Nanjing, Jiangsu, P.R.China

A novel tandem Michael addition-rearrangement-carbonylation was studied in the reaction of (4-nitrophenylsulfonylmethyl)benzene(1) and its derivatives with methacrylates (2) under solid-liquid PTC conditions and a probable mechanism is discussed.

Keywords: tandem Michael addition-rearrangement-carbonylation, (4-nitrophenylsulfonylmethyl)benzene, methacrylates

Many reports¹ have described using sulfur compounds for organic synthesis, since Seebach and Corey² reported the utilisation of 1,3-dithiane for the preparation of aldehydes and ketones. In general, an organic sulfur compound can be used as a synthetic agent according to two processes: (1) formation of a C-C bond between a sulfur agent and an organic compound to afford an intermediate and (2) its desulfurisation accompanied with the creation of a new functional group to produce a desired product. On the basis of our previous work,³ we continued to search for mild methods of the formation of C-C bonds by sulfur-containing organic compounds. Herein, we report a novel tandem Michael addition-rearrangement-carbonylation by the reaction of (4-nitrophenylsulfonylmethyl)benzene and its derivatives (1) with methacrylates (2), where the formation of C-C bonds and the elimination of sulfur dioxide proceeded at the same time and the tandem Michael addition-rearrangement-carbonylation products, γ -keto esters, useful synthetic intermediates,⁴ were easily obtained (Scheme 1). The structures of products (3) were characterised by mass spectroscopy (EI), IR spectroscopy, ¹H NMR, and elemental analysis.

To investigate the scope and limitation of this reaction, the effect of various substituent groups on the reaction was studied. When R^1 is an electron-withdrawing group such as cyano group or ester group, a higher yield and shorter time are

found (Table 1). In contrast, the product was almost not obtained when R^1 is an electron-releasing group such as methyl or methoxy. We thought electron-withdrawing groups may favour the formation of carbanions to promote the Michael addition in this reaction. Based on our experimental results, the reaction mechanism via the Meisenheimer³ complex and the oxygen-sulfur-ketone intermediates(4)⁵ is put forward (Scheme 2).

In summary, under mild conditions of K₂CO₃/DMF/TEBA, γ -keto esters could be easily obtained via Michael additionrearrangement-carbonylation, and the elimination of sulfur and formation of C–C bonds were accompanied by the production of a new carbonyl group. This method can provide a convenient pathway to synthesis of γ -keto esters or structurally similar products. The limitation and scope of this reaction will be studied.

Experimental

Unless noted materials were obtained from commercial suppliers and used without further purification. Melting points were determined with a Yancco MP-500 apparatus and were uncorrected. Microanalyses were performed with a Perkin-Elmer 240C instrument. IR spectra were recorded on a Nicolet 170SX FT-IR spectrometer (KBr pellet). ¹H NMR spectra were determined with a Bruker AM-400 spectrometer using TMS as an internal standard (chemical shifts in δ values). Mass spectra were obtained from a VG-ZAB-HS spectrometer at 70 eV (EI).

Scheme 1

^{*} To receive any correspondence. E-mail: panxf@lzu.edu.cn

[†] This is a Short Paper, there is therefore no corresponding material in

J Chem. Research (M).

Scheme 2

1.1: Ethyl 4-(4-nitrophenylsulfonylmethyl)benzoate 1d:⁶ Ethyl 4-(4-nitrophenylthio)benzoate 3.71g (10 mmol) was dissolved in glacial acetic acid (10 ml) at 60 °C. Sodium perborate tetrahydrate 4.62 g (30 mmol) was added. The mixture was continuously stirred for 2 hours at 50 °C. The solvent was removed under reduced pressure. Water was added to the residue. The precipitated product was collected, washed with water and recrystallised from ethanol (95 %) to give 2.86 g (82 %) of analytical sample of 1d. M.P.169–170 °C. (Lit.[7], m.p. 167–168 °C). IR (KBr pellet): 1714 (CO), 1526, 1348 (NO₂), 1301, 1144 (SO₂) cm⁻¹, ¹H NMR (CDCl₃): 8.22 (2H, d, Ar−H, *J*=9.0 Hz), 7.94 (2H, d, Ar−H, *J*=9.2 Hz), 7.77 (2H, d, Ar−H, *J*=9.0 Hz), 7.16 (2H, d, Ar−H, *J*=9.2 Hz), 4.44 (2H, s, CH₂), 4.40 (2H, q, OCH₂, *J*=7.0 Hz), 1.44 (3H, t, O-C-CH₃, *J*=7.0 Hz) ppm. 1a, 1b and 1c were synthesised by a method similar to 1d.

The yield of **1a** was 90 %, m.p. 169–170 °C (from glacial acetic acid). (lit⁷ m.p. 168–169 °C). IR: 1534, 1347 (NO₂), 1299, 1157 (SO₂) cm⁻¹, ¹H NMR (CDCl₃): 8.30 (2H, d, Ar–H, *J*=8.5 Hz), 7.77 (2H, d, Ar–H, *J*=8.5 Hz), 7.4–7.0 (5H, m, Ar–H), 4.31 (2H, s, CH₂)ppm. The yield of **1b** was 91%, m.p. 170–171 °C (from glacial acetic acid). Anal. Calcd. for $C_{13}H_{10}CINO_4S$: C, 50.09; H, 3.23; N, 4.49; Found. C, 49.98; H, 3.10; N, 4.55. IR: 1539, 1348 (NO₂), 1302, 1150 (SO₂) cm⁻¹. ¹H NMR (CDCl₃): 8.36 (2H, d, Ar–H, *J*=8.5Hz), 7.85 (2H, d, Ar–H, *J*=8.5Hz), 7.32 (2H, d, Ar–H, *J*=8.6 Hz), 7.06(2H, d, Ar–H, *J*=8.6 Hz), 4.33 (2H,s,CH₂)ppm. The yield of **1c** was 82%, m.p. 209–210 °C (from glacial acetic acid) (lit⁸ m.p. 207–209°C). IR: 2228 (CN), 1531, 1355 (NO₂), 1311, 1152 (SO₂)cm⁻¹. ¹H NMR (CDCl₃): 8.37(2H, d, Ar–H, *J*=8.5 Hz), 7.67 (2H, d, Ar–H, *J*=8.0 Hz), 7.39 (2H, d, Ar–H, *J*=8.0 Hz), 4.75 (2H, s, CH₂)ppm.

1.2: Methyl 2-methyl-2-(4-nitrophenyl)- 3-benzoylpropanate (3aa): To a solution of 1a (2 mmol, 0.54 g) in DMF (5 ml) was added anhydrous potassium carbonate 0.55 g (4 mmol) and TEBA (triethylbenzylammonium chloride) 0.1 g (0.44 mmol). The solution was stirred for 15 min at room temperature before methyl methacrylate 0.62 g (6 mmol) (2a) was added. The reaction progress was monitored by thin layer chromatography (TLC). After stirring for 60h at 75 °C, the reaction mixture was cooled and poured into cold water.

Table 1 Physical properties and data of elementary analysis and MS for products

Prod. no.	Formula (M.W)	React. time/h	Yield/%	M.pª/ºC	Elementary analysis found (cald./% C H N	MS/%
3aa	C ₁₈ H ₁₇ NO ₅ (327.36)	60	60	138–139	66.32 5.34 4.05 (66.04) (5.24) (4.28)	327(M ⁺ ,1.4),295(1.6),268(1.5), 251(2.5),120(13.6),105(100), 77(26.9).
3ba	C ₁₈ H ₁₆ CINO ₅ (361.80)	25	65	174–175	59.72 4.40 3.81	363,361(1.0,3.5,M ⁺),331,329 (1.8,2.4),304,302(2.2,6.0),156, 154(10.0,30.9),141,139(52.2, 100),113,111(13.2,38.4),
3bb	C ₁₉ H ₁₈ CINO₅ (375.83)	25	63	161–162	60.61 5.04 3.68 (60.72) (4.84) (3.73)	377,375(0.3,1.0,M ⁺),332,330 (0.4,1.7),304,302(0.7,1.9),156, 154(4.6,12.7),141,139(30.6, 100),113,111(5,1,14.9).
3ca	C ₁₉ H ₁₆ N ₂ O ₅ (352.37)	15	74	180–181	64.64 4.54 7.80 (64.76) (4.59) (7.95)	352(1.6,M ⁺),320(3.4),293(4.7), 276(9.6),208(2.3),145(18.7), 130(100) 102(30 4)
3cb	C ₂₀ H ₁₈ N ₂ O ₅ (366.40)	15	75	149–150	65.64 4.98 7.42 (65.56) (4.96) (7.65)	366(1.4,M ⁺),321(3.4),296(9.4), 236(0.7),145(11.1),130(100), 102(69.0)
3da	C ₂₁ H ₂₁ NO ₇ (399.43)	20	70	150–151	63.14 5.54 3.49 (63.14) (5.31) (3.51)	399(0.7,M ⁺),369(0.4),368(0.7), 354(4.5),340(3.9),192(17.0), 177(100) 149(29 2)
3db	C ₂₂ H ₂₃ NO ₇ (413.46)	20	72	82–83	63.91 5.83 3.37 (63.91) (5.62) (3.39)	413(1.8,M ⁺),368(15.9),340 (3.6),192(27.5),177(100), 149(37.2).

^aRecrystallised from a mixed solvent of petroleum ether and ethyl acetate (6:1).

Table 2 Data of IR, ¹H NMR for products

Prod. no.	IR μ _{max} (cm ⁻¹)		¹ Η NMR δ(ppm)		
	C=0	NO ₂			
3aa	1728	1517	8.10(2H,d,Ar-H, <i>J</i> =9.0Hz),7.50(2H,d,Ar-H, <i>J</i> =9.0Hz),7.9–7.3(5H,m,Ar-H),		
	1685	1346	3.85(1H,d,CH-H, <i>J</i> =18.0Hz),3.66(3H,s,OCH ₃),3.45(1H,d,CH-H, <i>J</i> =18.0Hz), 1.80(3H,s,CH ₃)		
3ba	1728	1516	8.26(2H,d,Ar-H, <i>J</i> =9.0Hz),7.94(2H,d,Ar-H, <i>J</i> =8.5Hz),7.63(2H,d,Ar-H, <i>J</i> =9.0Hz),		
	1683	1348	7.47(2H,d,Ar-H, <i>J</i> =8.5Hz),3.88(1H,d,CH-H, <i>J</i> =18.0Hz),3.72(3H,s,OCH ₃), 3.50(1H,d,CH-H, <i>J</i> =18.0Hz)1.80(3H,s,CH ₃)		
3bb	1723	1514	8.22(2H,d,Ar-H, <i>J</i> =9.0Hz),7.93(2H,d,Ar-H, <i>J</i> =8.5Hz),7.63(2H,d,Ar-H, <i>J</i> =9.0Hz),		
	1688	1344	7.46(2H,d,Ar-H, <i>J</i> =8.5Hz),4.26(2H,q,OCH ₂ , <i>J</i> =7.0Hz),3.94(1H,d,CH-H, <i>J</i> =18.0Hz), 3.55(1H,d,CH-H, <i>J</i> =18.0Hz),1.86(3H,s,C-CH ₃),1.25(3H,t,O-C-CH ₃ , <i>J</i> =7.0Hz).		
3ca	1729	1516	8.16(2H,d,Ar-H, <i>J</i> =9.0Hz),8.00(2H,d,Ar-H, <i>J</i> =8.5Hz),7.70(2H,d,Ar-H,J=9.0Hz),		
	1692	1353	7.56(2H,d,Ar-H,J=8.5Hz),4.06(1H,d,CH-H,J=18.0Hz),3.86(3H,s,OCH ₃),		
	2226(CN)		3.62(1H,d,CH-H, <i>J</i> =18.0Hz),1.80(3H,s,CH ₃)		
3cb	1694	1346	8.13(2H,d,Ar-H, <i>J</i> =9.0Hz),8.00(2H,d,Ar-H, <i>J</i> =8.5Hz),7.69(2H,d,Ar-H, <i>J</i> =9.0Hz),		
	1737	1512	7.56(2H,d,Ar-H, <i>J</i> =8.5Hz),4.16(2H,q,OCH ₂ , <i>J</i> =7.0Hz),3.88(1H,d,CH-H, <i>J</i> =18.0Hz),		
	2229(CN)		3.47(1H,d,CH-H,J=18.0Hz),1.83(3H,s,C-CH ₃),1.20(3H,t,O-C-CH ₃ ,J=7.0Hz).		
3da	1740	1520	8.16(2H,d,Ar-H, <i>J</i> =9.0Hz),8.10(2H,d,Ar-H, <i>J</i> =8.5Hz),7.94(2H,d,Ar-H, <i>J</i> =9.0Hz),		
	1720	1348	7.66(2H,d,Ar-H, <i>J</i> =8.5Hz),4.47(2H,q,OCH ₂ , <i>J</i> =7.0Hz),3.85(1H,d,CH-H, <i>J</i> =18.0Hz),		
	1686		3.66(3H,s,OCH ₃),3.45(1H,d,CH-H, <i>J</i> =18.0Hz),1.66(3H,s,C-CH ₃),		
			1.34(3H,t,O-C-CH ₃ , <i>J</i> =7.0Hz).		
3db	1730	1517	8.11(2H,d,Ar-H, <i>J</i> =9.0Hz),8.04(2H,d,Ar-H, <i>J</i> =8.5Hz),7.86(2H,d,Ar-H, <i>J</i> =9.0Hz),		
	1720	1345	7.54(2H,d,Ar-H, <i>J</i> =8.5Hz),4.26(2H,q,OCH ₂ , <i>J</i> =7.0Hz),4.07(2H,q,OCH ₂ , <i>J</i> =7.0Hz),		
	1688		3.86(1H,d,CH-H,J=18.0Hz),3.46(1H,d,CH-H,J=18.0Hz),1.77(3H,s,C-CH ₃),1.60-1.06(6H,m,2x-C-CH ₃ ,J=7.0Hz).		

The mixture was added with 2N HCl to adjust pH=6.5 and extracted with dichloromethane (3×15 ml). The combined organic phase was dried over anhydrous sodium sulfate and concentrated. The residue was chromatographied on silica. Elution with a mixed solvent of petroleum ether and ethyl acetate (6:1) afforded 0.40 g (60 %) of the product (**3aa**), which is methyl 2-methyl-2- (4-nitrophenyl)-3-benzoyl-propanate, as a white needles, m.p. 137–138 °C.

3ba-3db were synthesised by the method similar to **3aa** and the scale was the same. The principal reaction conditions and analytical data were listed in Tables 1 and 2.

Received 28 April 2003; accepted 27 June 2003 Paper 03/1900

References

- (a) K. Ogura, Pure and Appl. Chem., 1987, 59, 1033; (b)
 P. Kocienski, Phos. Sulfur, 1985, 24, 477; (c) H.C.J. Ottenheijm, Phos. Sulfur, 1985, 24, 509; (d). C.Y. Xu, G.J. Liu and Z. Zhang, Synth. Commun., 1987, 17, 1839; (e) G.H. Posner, Stud. Prog. Chem., 1987, 28, 145.
- 2 E.J. Corey and D. Seebach, Angew. Chem. Int. Ed. Engl., 1965, 4, 1075.

- 3 (a) G.R. Yue and Z. Zhang, *Synth. Commun.*, 1996, 26(10), 2003;
 (b) W.H. Cheng, Z. Zhang and X.Q. Xu, *Gaodeng Xuexiao Huaxue Xuebao*, 1995, 16(9), 1410;
 (c) G.R. Yue and Z. Zhang, *Chinese Chem. Lett.*, 1997, 7(4), 305;
 (d) G.R. Yue and Z. Zhang, *Synth. Commun.*, 1997, 27(8), 1455.
- 4 (a) T. Miyakoshi, Org. Prep. Proc. Int., 1989, 21, 659;
 (b) W. Nagata and M. Yoshioka, Org. React., 1977, 25, 255.
 (c) E. Wenkert, C.A. McPherson, E.L. Sanchez and R.L. Webb, Synth. Commun., 1973, 3, 255;
 (d) K. Saigo, H. Kurihara, H. Miura, A. Hongu, N. Kubota, H. Nohira and M. Hasegawa, Synth. Commun., 1984, 14, 787;
 (e) E.L. Grimm and H.U. Reissig, J. Org. Chem., 1985, 50, 242;
 (e) H. Bieräugel, J.M. Akkerman; J.C.L. Armande and U.K. Pandit, Tetrahedron Lett., 1974, 2817;
 (f) P. Dowd and S.C. Choi, J. Am. Chem. Soc., 1987, 109, 3493;
 (g) P. Dowd and S.C. Choi, Tetrahedron, 1989, 45, 77;
 (h) P. Dowd and S.C. Choi, Tetrahedron, 1989, 30, 6129.
- 5 B. Zwanenburg and J. Strating, *Quart. Rep. Sulfur Chem.*, 1979, 5(1), 79.
- 6 X.Q. Xu, W.Q. Zhou and Z. Zhang, *Nanjing Daxue Xuebao*, *Ziran Kexue Ban*, 1991, **27**, 483. C.A., **116**: 128270u
- 7 M. Uher, K. Antos, A. Martvon and T. Sticzay, *Chem. Zvesti.*, 1973, 27(3), 403.
- 8 A.A. El-Bardan, E.A. Hamed and E.F. Saad, J. Chem. Eng. Data, 1989, 34(1), 133.